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Long-Range Dependence Does Not Necessarily
Imply Non-Exponential Tails

Armand M. Makowski, Senior Member, IEEE

Abstract—We exhibit a buffer model with a provably long-range
dependent input source but whose corresponding measure of
buffer occupancy is exponentially distributed (and thus has expo-
nential tails). This example invalidates the perception which has
emerged in the literature on traffic engineering, that long-range
dependencies necessarily induce nonexponential tails for the
buffer asymptotics.

Index Terms—Exponential tails, long-range dependence, on–off
fluid models.

I. INTRODUCTION

STARTING with the landmark data set collected at BellCore
[13], a growing number of measurement studies have by

now concluded that network traffic exhibits time dependencies
at a much larger number of time scales than had been tradition-
ally observed. Thislong-range dependencehas been detected in
a wide range of applications and over multiple networking in-
frastructures, e.g., Ethernet LANs [13] (and references therein),
VBR traffic [3], [8], Web traffic [6], and WAN traffic [17].

Roughly speaking, this long-range dependence amounts to
correlations in the packet stream spanning multiple time scales,
which are individually rather small but which decay so slowly
as to be nonsummable. This is expected to affect performance
in a manner drastically different from that predicted by (tradi-
tional) summable correlation structures which typically arise
in Markovian traffic models and Poisson-like sources. This
“failure of Poisson modeling” has generated a strong interest in
alternative traffic models which capture observed (long-range)
dependencies [7], [14], e.g., fractional Brownian motion [15]
and its discrete-time analog, fractional Gaussian noise [1],
and on–off (fluid) sources with heavy-tailed and subexponen-
tial activity periods (e.g., [4] and [11]). These studies have
exposed the limitations of traditional traffic models in pre-
dicting storage requirements and devising congestion controls,
in that the buffer asymptotics found for these traffic inputs
do not display theexponentialtails typically associated with
short-range dependent Markovian models.

In fact, in the wake of these and related studies, a percep-
tion has emerged in the literature to the effect that long-range
dependencies necessarily inducenon–exponential tails for the
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buffer asymptotics. Here we strike a note of caution as to the va-
lidity of such a “folk” theorem. We do so by exhibiting a buffer
model with a provably long-range dependent input source but
whose corresponding measure of buffer occupancy isexponen-
tially distributed (and thus has exponential tails). Specifically,
we consider the popular on–off fluid model used for evaluating
the performance of asynchronous transfer mode (ATM) multi-
plexers where an infinite capacity buffer fed by an (independent)
on–off fluid source with peak rateis drained at constant rate.

As summarized in Section II, the statistics of such an on–off
fluid source are fully determined by a pair of independent
random variables (rvs) and describing the generic on-period
and off-period durations, respectively. In Section III we easily
adapt the results obtained in [10] to identify the polynomial
decay of the correlation function of the on–off source with
exponentially distributed and heavy-tailed off-duration rv
(e.g., distributed according to a regularly varying or Pareto-like
distribution). Such an on–off source is long-range dependent,
in fact asymptotically (second-order) self-similar.

If where is the asymptotic fraction of time
that the source is active, then there exists a nonidentically zero

–valued rv , known as the stationary backlog, which char-
acterizes buffer ocuppancy level in steady state. In Section IV a
simple representation of the stationary backlog is given in terms
of the stationary waiting time rv in an auxiliary stable
queue. This representation is then used in Section V to outline a
proof of the fact that if is exponentially distributed, so is the
rv regardlessof the distribution of .

The discrete-time version of the model used here was al-
ready considered in [9]; it was pointed out in that reference
that fitting the data sometimes requires that the off-period du-
ration rv be modeled by a heavy-tailed distribution, say a
Pareto-like rv. This simple model crisply illustrates the complex
and subtle impact that (long-range) dependencies in the input
stream can have on the tail probability of buffer contents through
the queue dynamics. In line with the discussion in [16], buffer
sizingcannotbe determined adequately by appealing solely to
the short versus long-range dependence characterization, thus
second-order properties, of the input traffic.

A word on the notation used in this letter. Two–valued
rvs and are said to be equal in law if they have the same
distribution, a fact we denote by . Convergence in
distribution is denoted by (with going to infinity). For
any integrable –valued rv , the forward recurrencetime

is defined as the rv with integrated tail distribution given by
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II. ON–OFF SOURCES

An on–off source of peak rate is characterized by a
succession of cycles, each such cycle comprising an off-period
followed by an on-period. During the on-periods the source is
active and produces fluid at constant rate; the source is silent
during the off-periods: For each , let and
denote the durations of the on-period and off-period in the

th cycle, respectively. Thus, if the epochs
denote the beginning of successive cycles, with we
have for each . The activity
of the source is then described by the {0,1}–valued process

given by

(1)

with the source active (resp. silent) at timeif (resp.
).

An independent on–offsource is one for which: 1) the
–valued rvs and are

mutually independent rvs which are independent of the pair of
rvs and associated with the initial cycle and 2) the rvs

(resp. ) are i.i.d. rvs with
generic off-period duration rv (resp. on-period duration rv

). Throughout the generic rvs and are assumed to be
independent –valued rvs such that , ,
and we simply refer to the independent on–off process just
defined as the on–off source ( ).

In general, the activity process (1) is not stationary unless
the rvs and are selected appropriately. Here we use the
following variation on a construction given in [2] and [18]. With

(2)

we introduce the {0,1}–valued rv distributed according to
. A stationary version of

(1), still denoted , is now obtained by selecting
to be of the form

(3)

with rvs , , and taken to be mutually independent and
independent of the rvs .

III. CORRELATION STRUCTURE

If is the stationary version of the on–off source
, then its correlation function is defined by

(4)

Below we shall write to acknowledge the fact that
the correlation function (4) is determined by the rvsand .
An expression for this correlation function was obtained in [10,
Th. 2.2, p. 148], and used there to derive large lag asymptotics
[10, Th. 4.3, p. 158]. Before specializing these results to the case
of interest, we recall that an –valued rv is said to be of
regular variation if

(5)

for some constant and some slowly varying function
. The constant is known as the index of

variation, and we write . Moreover for any ,
we denote by any rv which is exponentially distributed with
parameter .

We now specialize Theorem 4.3 in [10, p. 158] to the on–off
source with and for constants

and . In that case, we have
(with going to infinity). Under a nonsingularity

assumption on the distribution of the sum
for some , [10, p. 158, eq. (4.11)] holds and takes
the form

(6)

(as goes to infinity). For instance, the required nonsingularity
assumption is satisfied if is of regular variation of the form

(7)

for and .
We now turn to the case of an on–off source ( ) with

and for constants and .
The key observation is that if is the stationary
version of the on–off source , then { , }
can be interpreted as the stationary version of the on–off source

. Thus

(8)

and whenever (6) holds, we can also conclude that

(9)

(as goes to infinity). Consequently, here as well, we obtain
the asymptotic self-similarity, thus long-range dependence, of
the on–off source with and for
constants and . A similar result was obtained
in [9] for discrete-time on–off sources by direct arguments.

IV. THE STATIONARY BACKLOG

Consider an independent on–off source () with peak rate
as described in Section II. The total amount of fluid gen-

erated in by this on–off source is given by

(10)

If we offer this on–off source to an infinite ca-
pacity buffer drained at the constant rate of, then under the
nontriviality condition , a backlog results in the amount

at time . Under the stability condition

(11)

with given by (2), there exists a nonidentically zero
–valued rv such that irrespectively of the

initial backlog . The rv is known as thestationary
backlogand can be represented by

(12)

where is given by (10) evaluated with the sta-
tionary (and reversible) version of .
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For our purpose we find it useful to relate the stationary
backlog as given by (12) to the stationary waiting of an auxil-
iary queue. First some notation: Consider a standard

queue with generic service time and interarrival
time ; these rvs are assumed integrable. For each ,
let denote the waiting time (in buffer) of the customer.
Under the stability condition

(13)

there exists an –valued rv such that
irrespectively of . We refer to as thesta-

tionary waiting timerv associated with the standard
queue with generic service timeand interarrival time .

The following result has appeared elsewhere [5], [12] in a
somewhat different form for a model equivalent to the one con-
sidered here:

Proposition 1: Consider the buffer model with drain rate
when fed by an on–off source( ) with peak rate such that

, and define the rv by

where the rvs , , and are mutually independent. Then,
it holds that

with the rv taken independent of the rv .
Note that (11) is equivalent to (13) with the identification

and . Proposition 1 can be obtained by setting
in Proposition 4.1 in [2].

V. EXPONENTIAL ON-PERIODS

Closed-form expressions can be obtained for the distribution
of when the on-period durations are exponentially distributed,
say for some parameter , so that

with (14)

Noting that , we conclude that

(15)

with rvs , and mutually independent, and
.

The key observation is that can
now be interpreted as the stationary delay in a
stable with generic service time and
interarrival time . It is well known that the stationary delay in
a stable queue is exponentially distributed [19, p. 395]:
More precisely, where is the
unique solution to the nonlinear equation

(16)

Consequently, with independent rvs and , we can
rewrite (15) as

(17)

Straightforward computations lead to the following result which
appeared already in [5], [12] in the context of a manufacturing
model with random disruptions.

Proposition 2: Under the assumptions of Proposition 1,
assume that for some parameter. Then, with
given through (14), it holds that

(18)
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