550 IEEE COMMUNICATIONS LETTERS, VOL. 6, NO. 12, DECEMBER 2002

Long-Range Dependence Does Not Necessarily
Imply Non-Exponential Tails

Armand M. Makowskj Senior Member, IEEE

Abstract—We exhibit a buffer model with a provably long-range buffer asymptotics. Here we strike a note of caution as to the va-
dependent input source but whose corresponding measure of |idity of such a “folk” theorem. We do so by exhibiting a buffer
buffer occupancy is exponentially distributed (and thus has expo- model with a provably long-range dependent input source but

nential tails). This example invalidates the perception which has h di f buff .
emerged in the literature on traffic engineering, that long-range WNOSE COIESponding measure of bulter occupanexmonen-

dependencies necessarily induce nonexponential tails for thetially distributed (and thus has exponential tails). Specifically,

buffer asymptotics. we consider the popular on—off fluid model used for evaluating
Index Terms—Exponential tails, long-range dependence, on—off the performance _Of .a§ynchronlous transfer mode.(ATM) multi-
fluid models. plexers where an infinite capacity buffer fed by an (independent)

on—off fluid source with peak rateis drained at constant rate
As summarized in Section Il, the statistics of such an on—off
|. INTRODUCTION fluid source are fully determined by a pair of independent
TARTING with the landmark data set collected at BellCorgandom variables (rvdy and! describing the generic on-period
13], a growing number of measurement studies have lapd off-period durations, respectively. In Section Il we easily
now concluded that network traffic exhibits time dependenci@slapt the results obtained in [10] to identify the polynomial
at a much larger number of time scales than had been traditieiecay of the correlation function of the on—off source with
ally observed. Thitong-range dependentms been detected inexponentially distributeds and heavy-tailed off-duration r
a wide range of applications and over multiple networking irfe.g., distributed according to a regularly varying or Pareto-like
frastructures, e.g., Ethernet LANs [13] (and references thereidistribution). Such an on—off source is long-range dependent,
VBR traffic [3], [8], Web traffic [6], and WAN traffic [17]. in fact asymptotically (second-order) self-similar.

Roughly speaking, this long-range dependence amounts tdf rp < ¢ < 7 wherep is the asymptotic fraction of time
correlations in the packet stream spanning multiple time scal#¥t the source is active, then there exists a nonidentically zero
which are individually rather small but which decay so slowl§R—valued nV, known as the stationary backlog, which char-
as to be nonsummable. This is expected to affect performarasierizes buffer ocuppancy level in steady state. In Section IV a
in a manner drastically different from that predicted by (tradsimple representation of the stationary backlog is given in terms
tional) summable correlation structures which typically arisef the stationary waiting time rv in an auxiliary staldld |G 1|1
in Markovian traffic models and Poisson-like sources. Thigueue. This representation is then used in Section V to outline a
“failure of Poisson modeling” has generated a strong interestproof of the fact that ifB is exponentially distributed, so is the
alternative traffic models which capture observed (long-range) [V'|V' > 0] regardlessof the distribution off.
dependencies [7], [14], e.g., fractional Brownian motion [15] The discrete-time version of the model used here was al-
and its discrete-time analog, fractional Gaussian noise [1§ady considered in [9]; it was pointed out in that reference
and on—off (fluid) sources with heavy-tailed and subexponeifat fitting the data sometimes requires that the off-period du-
tial activity periods (e.g., [4] and [11]). These studies hawe@tion rv I be modeled by a heavy-tailed distribution, say a
exposed the limitations of traditional traffic models in prePareto-like rv. This simple model crisply illustrates the complex
dicting storage requirements and devising congestion contr@lgd subtle impact that (long-range) dependencies in the input
in that the buffer asymptotics found for these traffic inputstream can have on the tail probability of buffer contents through
do not display theexponentialtails typically associated with the queue dynamics. In line with the discussion in [16], buffer
short-range dependent Markovian models. sizing cannotbe determined adequately by appealing solely to

In fact, in the wake of these and related studies, a percdpe short versus long-range dependence characterization, thus
tion has emerged in the literature to the effect that long-rangecond-order properties, of the input traffic.
dependencies necessarily induwa-exponential tails for the A word on the notation used in this letter. TWld—valued

rvs X andY are said to be equal in law if they have the same

" ot received Feb 6 2002 Th e edit dinat distribution, a fact we denote b¥ =,; Y. Convergence in
st el Pebruany 2002, Tne assoctesatorcoortnatnd BiStribution i denoted by, (with n going 1o infiniy). For
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Il. ON—OFF SOURCES variation, and we writeX =,; RV,. Moreover for anyu > 0,

An on—off source of peak rate is characterized by a e denote by, any rv which is exponentially distributed with

. o teg.
succession of cycles, each such cycle comprising an oﬁ—perﬁ?{ame . .
followed by an on-period. During the on-periods the source isWe n%WISpe(?;ﬁ“ZBe Ihe(‘)’;(‘a/m 43d? [_10’ %’1?8] to th? OT_Oﬁ
active and produces fluid at constant ratéhe source is silent iource( ’ 2) Wld 3 _St | tﬁ z?n st hﬁ g ;:ons ajs
during the off-periods: For each=0,1,..., let B, and I, < @< z2an £ > U.In that case, we hav [ = t] »
denote the durations of the on-period and off-period in(the o(P[B > 1) (with ¢ going t9 infinity). Under a nonsingularity
1)th cycle, respectively. Thus, if the epoct&,, n = 0,1, ...} assumption on the distribution of the sup+-B1+- - -+ 1, + B,

' AR X : ' o for somen = 1,2,..., [10, p. 158, eg. (4.11)] holds and takes
denote the beginning of successive cycles, With.= 0 we the f v
haveT, 1 :=>,_, I;+ B, foreachn = 0,1, .. .. The activity e torm

- . _.3\3
of the source is then described by the {0,1}-valued process T(h; RVa, Eg) ~ (1-p) h—(a—l)L(h) (6)

{(1).t > 0} given by (a— DE[]
e (ash goes to infinity). For instance, the required nonsingularity
£(t) = Z 1T+ 1, <t <Tpqa], t>0 (1) assumption is satisfied If is of regular variation of the form
n=0
with the source active (resp. silent) at tihd £(¢) = 1 (resp. P[I>a]=a%a+x)"", x>0 ()
£(t) = 0). forl < a < 2 anda > 0.

An independent on-offource is one for which: 1) the \yenowturntothe case ofan on—off sourée () with B =,

R —valued rvs{/,,, n = 1,...} and{B,, n = L...} are p anqr —, RV, for constantsl < a < 2 andg > 0.
mutually independent rvs which are independent of the pair of,o key observation is that (), ¢ > 0} is the stationary

rvs Iy and By associated with the initial cycle and 2) the "V§ersion of the on—off sourcéB, I), then {l — £(t), t > 0}

{In,n = 1,...} (resp{By, n = 1,...}) are iid. vs With - o4 e interpreted as the stationary version of the on—off source
generic off-period duration r/ (resp. on-period duration rv (I, B). Thus

B). Throughout the generic rv8 and [ are assumed to be

independeniR ; —valued rvs such thét < E[B], E [I] < oo, T'(h; B,I) =T(h; I, B)
and we simply refer to the independent on—off process just

defined as the on—off sourc&(1). and whenever (6) holds, we can also conclude that

In general, the activity process (1) is not stationary unless

h>0 8)

(h; Eg, RV,) ~ Mh‘(‘"l)L(h) (9)

the rvsly and B, are selected appropriately. Here we use the (a — 1)E[I]
following variation on a construction givenin [2] and [18]. With oo .
(ash goes to infinity). Consequently, here as well, we obtain
p:=E[B](E[B]+E[]), (2) the asymptotic self-similarity, thus long-range dependence, of

the on—off sourc¢B, I) with B =, Eg andI =, RV, for
constantd < a < 2 andg > 0. A similar result was obtained
in [9] for discrete-time on—off sources by direct arguments.

we introduce the {0,1}-valued &/ distributed according to
P[U=1] = p = 1 - P[U = 0]. A stationary version of
(1), still denoted{&(t), ¢ > 0}, is now obtained by selecting

(o, Bo) to be of the form IV. THE STATIONARY BACKLOG

— * * _

(Io, Bo) =t (0, B)U + (I", B)(1 = U) ) Consider an independent on—off sourék {) with peak rate
with rvsU, B, B* andI* taken to be mutually independent and- as described in Section Il. The total amoutit) of fluid gen-
independent of the rv&B,,, I,,, n = 1,...}. erated in[0, ¢) by this on—off source is given by

ot
[ll. CORRELATION STRUCTURE A(t) = r/ &(s)ds, t>0. (20)
J0

If {¢£(¢), t > 0} is the stationary version of the on—off sourc

e . oo
(B, I), then its correlation function is defined by If we offer this on—off sourc A(¢), ¢ > 0} to an infinite ca-

pacity buffer drained at the constant ratecothen under the
[(h) :=cov(&(t),&(t + h)), t,h > 0. (4) nontriviality conditionc < r, a backlog results in the amount

Below we shall writel'(h; B, I') to acknowledge the fact thatv(t> attimez > 0. Under the stability condition

the correlation function (4) is determined by the iWsand 1. rp < c (11)
An expression for this correlation function was obtained in [10, . . _ _

Th. 2.2, p. 148], and used there to derive large lag asymptot§h p given by (2), there exists a nonidentically zero
[10, Th. 4.3, p. 158]. Before specializing these results to the cdBe-—valued rvV such thatV (t) = V irrespectively of the

of interest, we recall that alR , —valued rvX is said to be of initial backlog V' (0). The rv V' is known as thestationary
regular variation if backlogand can be represented by

P[X >z]=2"%L(x), x>0 (5) V =gt supys (A(t) — ct) 12)

for some constantt > 0 and some slowly varying function where{A(t), ¢t > 0} is given by (10) evaluated with the sta-
L : Ry — IR,. The constanty is known as the index of tionary (and reversible) version ¢£(t), ¢ > 0}.
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For our purpose we find it useful to relate the stationai@onsequently, with independent ¥ andE,(1_,), we can
backlog as given by (12) to the stationary waiting of an auxitewrite (15) as
iary GI|GI|1 queue. First some notation: Consider a standard

GI|GI|1 queue with generic service time and interarrival

timer; these rvs are assumed integrable. For each0, 1, .. .,

let W,, denote the waiting time (in buffer) of thé" customer.

Under the stability condition

E[o] < E[7] (13)
there exists arlR —valued rvi¥ (o, 7) such thatW, =,
W (o, ) irrespectively ofi¥,. We refer tolW (o, 7) as thesta-
tionary waiting timerv associated with the standaftl|GI|1
gueue with generic service tinseand interarrival timer.

V =st [XO + Ea(l—u)} : 17

Straightforward computations lead to the following result which
appeared already in [5], [12] in the context of a manufacturing
model with random disruptions.

Proposition 2: Under the assumptions of Proposition 1,
assume thaB =, Eg for some parametef. Then, withy
given through (14), it holds that

The following result has appeared elsewhere [5], [12] in a
somewhat different form for a model equivalent to the one con-

sidered here:

Proposition 1: Consider the buffer model with drain rate
when fed by an on—off sour¢®, I) with peak rater such that

rp < ¢ < r, and define the nX by

Xo=st (r—=c)B*U+ ((r—c¢)B—cI*)(1-0)

where the rve3, B*, I* andU are mutually independent. Then,

it holds that
+
V=t [Xo + W((r—c¢)B, cl)}

with the rv X, taken independent of the W ((r — ¢)B, cI).
Note that (11) is equivalent to (13) with the identification=

(1

(2]

(3]

(4]
(3]
(6]

(71

(r — ¢)B andr = cI. Proposition 1 can be obtained by setting

h = 0 in Proposition 4.1 in [2].

V. EXPONENTIAL ON-PERIODS

(8]

[9]

Closed-form expressions can be obtained for the distribution
of V- when the on-period durations are exponentially distributed[10]

sayB =,; E3 for some parametg? > 0, so that

(r—c)B =4 E, with = (r—c¢)™'f. (14)
Noting thatB* =,; B, we conclude that
N +
V=g [Xo+(r=c)B+W((r—c)B,el)] (15)

with rvs Xo, B andW ((r —¢) B, cI) mutually independent, and

Xo =o —cI*(1 = U).

The key observation is th&¥ ((r — ¢)B, ¢I) + (r — ¢)B can
now be interpreted as the stationary del2§(r — ¢)B,cI) ina
stableGT|M |1 with generic service timgr — ¢) B =,; E,, and

interarrival timec!. It is well known that the stationary delay in
astable77|M|1 queue is exponentially distributed [19, p. 395]:

More precisely,D((r — ¢)B,cl) =4 E,1—,) whereo is the
unique solution to the nonlinear equation
c=FE I:e—u(l—a)c]:| ,

0<o<l. (16)

(11]

(12]

(23]

(14]
[15]
[16]

(17]

(18]

[19]

PV >t = ]%e_“(l_”)t, t>0. (18)
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